List 4

Double integrals
110. Calculate either one of the integrals

$$
\int_{1}^{2} \int_{0}^{4}\left(y^{3}+x y\right) \mathrm{d} x \mathrm{~d} y \quad \text { or } \quad \int_{0}^{4} \int_{1}^{2}\left(y^{3}+x y\right) \mathrm{d} y \mathrm{~d} x .
$$

(The answers are the same since these both describe the same integral over a rectangle.)
111. Calculate the integral over a rectangle (you may choose whether to integrate $\mathrm{d} y \mathrm{~d} x$ or $\mathrm{d} x \mathrm{~d} y)$:
(a) $\iint_{R}\left(\frac{x}{y}+\frac{y}{x}\right) \mathrm{d} A$ with $R=\{(x, y): 1 \leq x \leq 4$ and $1 \leq y \leq 2\}$.
(b) $\iint_{R} x \sin (x y) \mathrm{d} A$ with $R=[0,1] \times[\pi, 2 \pi]$.
(c) $\iint_{R} \frac{x+y}{e^{x}} \mathrm{~d} A$, where R has $(0,0)$ at the bottom-left and $(1,1)$ at top-right.
112. Draw the domain of integration for $\int_{0}^{1} \int_{x^{2}}^{x} \frac{y}{x^{2}} \mathrm{~d} y \mathrm{~d} x$ and evaluate the integral.
113. Integrate $f(x, y)=y^{2}$ over the triangle with vertices at $(0,1),(1,2)$, and $(4,1)$.

114. The integral $\int \frac{1}{y^{3}+1} \mathrm{~d} y$ is very difficult, so evaluate

$$
\int_{0}^{4} \int_{\sqrt{x}}^{2} \frac{1}{y^{3}+1} \mathrm{~d} y \mathrm{~d} x
$$

by first "reversing the order of integration", that is, by changing to an integral $\mathrm{d} x \mathrm{~d} y$ over the same region.
115. Draw the domain of integration and evaluate the integral:
(a) $\int_{0}^{3} \int_{0}^{y} x y \mathrm{~d} x \mathrm{~d} y$
(c) $\int_{1}^{e} \int_{\ln x}^{1} \frac{1}{e^{y}-1} \mathrm{~d} y \mathrm{~d} x$
(b) $\int_{1}^{4} \int_{x}^{2 x} x^{2} \sqrt{y-x} \mathrm{~d} y \mathrm{~d} x$
(d) $\int_{0}^{3} \int_{y}^{3} \frac{1}{\sqrt{x^{2}+1}} \mathrm{~d} x \mathrm{~d} y$
116. Set up each of the following as an iterated integral $\mathrm{d} x \mathrm{~d} y$ or as an iterated integral $\mathrm{d} y \mathrm{~d} x$.
(a) $\iint_{R} f \mathrm{~d} A$, where R is the rectangle with corners $(3,0)$ and $(10,5)$.
(b) $\iint_{T} f \mathrm{~d} A$, where T is the triangle with corners $(0,0),(-4,4)$, and $(4,4)$.
(c) $\iint_{D} f \mathrm{~d} A$, where D is bounded by $y=x$ and $y=2-x^{2}$.
(d) $\iint_{D} f \mathrm{~d} A$, where D is bounded by $y=-2, y=\frac{1}{x}, y=-\sqrt{-x}$.
(e) $\iint_{R} f \mathrm{~d} A$, where R is bounded by $y=x+3$ and $y=x^{2}+3 x+3$.
(f) $\iint_{R} f \mathrm{~d} A$, where R is bounded by $y=\sqrt{x}, x=0, y=1$.

(a) as the area between curves $y=x^{2}$ and $y=x: \int_{0}^{1}\left(x-x^{2}\right) \mathrm{d} x$ (Analysis I),
(b) as the area between curves $x=\sqrt{y}$ and $x=y: \int_{0}^{1}(\sqrt{y}-y) \mathrm{d} y$ (Analysis I),
(c) as the integral of $f(x, y)=1$ over this domain: $\int_{0}^{1} \int_{x^{2}}^{x} 1 \mathrm{~d} y \mathrm{~d} x$,
(d) as the integral of $f(x, y)=1$ over this domain: $\int_{0}^{1} \int_{y}^{\sqrt{y}} 1 \mathrm{~d} x \mathrm{~d} y$.
118. Which region below corresponds to $\int_{0}^{2} \int_{x}^{2 x} x \mathrm{~d} y \mathrm{~d} x$?
(A)

(B)

(C)

(D)

119. Integrate

$$
f(x, y)=e^{x / y}
$$

over the region bounded by $y=\sqrt{x}$ and $x=0$ and $y=1$.
120. Re-write $\int_{1}^{4} \int_{x}^{4 x} x \sqrt{y-x} \mathrm{~d} y \mathrm{~d} x$ as the sum of two integrals $\mathrm{d} x \mathrm{~d} y$.
*121. Calculate $\int_{1}^{4} \int_{x}^{x+2} \int_{0}^{y^{2}} \frac{x+z}{y^{2}} \mathrm{~d} z \mathrm{~d} y \mathrm{~d} x$.
122. Does it take more energy to spin a disk or a square of the same mass around its center? The "moment of inertia" of a shape is the integral of $x^{2}+y^{2}$ over that region. Calculate this number for both these regions:

$$
\begin{aligned}
\text { square } & R=\{(x, y):-1 \leq x \leq 1,-1 \leq y \leq 1\} \\
\text { disk } & D=\left\{(x, y): x^{2}+y^{2} \leq \frac{4}{\pi}\right\} .
\end{aligned}
$$

The shape with higher moment of inertia will require more energy ${ }^{2}$ to spin.

[^0]
[^0]: ${ }^{1}$ Moment of inertia depends on density and is actually $I=\iint_{S}\left(x^{2}+y^{2}\right) \cdot \rho(x, y) \mathrm{d} A$ in general. Task 122 assumes the shapes have constant density $\rho(x, y)=1$. Also, this formula is for spinning around the origin. If an object is spun around a different point or around an axis instead of a point, the formula is slightly different.
 ${ }^{2}$ The energy required to get a still object to spin with angular velocity ω is $K=\frac{1}{2} I \omega^{2}$.

